TWO PARTICULAR SOLUTIONS OF THE PROBLEM OF MOTION OF A BODY WITH A FIXED POINT

PMM Vol. 32, No. 3, 1968, pp. 544-548

B.I. KONOSEVICH and E.V. POZDNIAKOVICH
(Donetsk)

(Received October 9, 1967)
There are fourteen known exact particular solutions of the problem in question. They are all listed in [1], where it is noted that the equations of motion of a body are much simpler when one of the special coordinate axes coincides with the principal axis and when the gyrostatic moment is orthogonal to this axis. In this case the problem reduces to a system of four relatively simple differential equations in five variables related by an algebraic expression. This system admits of two exact solutions representable as segments of trigonometric series in some variable τ related to time by a differential expression.

1. Under the conditions $\lambda=\lambda_{1}=\lambda_{2}=0, b_{2}=0$ Eqs. (1.1)-(1.4) of [1] are

$$
\begin{gather*}
x^{*}=-z\left[\left(a_{1}-a_{2}\right) y+b x\right], \quad y=z\left[\left(a-a_{2}\right) x+b y\right]-\gamma_{2} \\
\gamma^{*}=a_{2} z \gamma_{1}-\left(a_{1} y+b x\right) \gamma_{2}, \quad \gamma_{1}^{*}=(a x+b y) \gamma_{1}-a_{2} z \gamma \\
a x^{2}+a_{1} y^{2}+a_{2} z^{2}+2 b x y-2 \gamma=2 E, \quad x \gamma+y \gamma_{1}+z \gamma_{2}=k \tag{1.1}
\end{gather*}
$$

Following [3], we introduce the variable τ,

$$
d \tau=a_{2} z d t
$$

Setting $U(\tau)=\gamma_{2} / a_{2} z, h=2 E / a_{2}$ and referring the quantities $a, a_{1}, b, k, \gamma, \gamma_{1}, \gamma_{2}$ to a_{2}, we arrive at a system of equations describing the motion of a body in the case under consideration,

$$
\begin{gather*}
d x / d \tau=-\left(a_{1}-1\right) y-b x, \quad d y / d \tau=(a-1) x-b y-U \\
d \gamma / d \tau=\gamma_{1}-\left(a_{1} y+b x\right) U, \quad d \gamma_{1} / d \tau=-\gamma+(a x+b y) U \tag{1.2}\\
x \gamma+y \gamma_{1}+\left(h+2 \gamma-a x^{2}-a_{1} y^{2}-2 b x y\right) U=k \tag{1.3}
\end{gather*}
$$

We obtained the latter equation by eliminating z^{2} from integrals (1.1). The variables z and γ_{2} are given by Formulas

$$
\begin{equation*}
z^{2}=h+2 \gamma-a x^{2}-a_{1} y^{2}-2 b x y, \quad \gamma_{2}=z U \tag{1.4}
\end{equation*}
$$

The following integral is obtained:

$$
\begin{equation*}
\gamma^{2}+\gamma_{1}^{2}+{\gamma_{2}^{2}}^{2}=\Gamma^{2} \quad\left(\Gamma=m g r_{c} / a_{2}\right) \tag{1.5}
\end{equation*}
$$

Here r_{c} is the distance from the fixed point to the center of mass of the body; $m g$ is the weight of the body. Instead of (1.3) we shall henceforth make use of the equivalent (by virtue of (1.2)) relation

$$
\begin{equation*}
y d \gamma / d \tau-x d \gamma_{1} / d \tau+(2 \gamma+n) U=k \tag{1.6}
\end{equation*}
$$

2. Noting that system (1.2) is linear in x, y, y, y_{1} for a given $U=U(\mathcal{T})$, we stipulate that the function U is of the form

$$
\begin{equation*}
U=\sum_{n=-2}^{2} U_{n} e^{i n v \pi} \tag{2.1}
\end{equation*}
$$

Eqs. (1.2) now define x, y, y, y_{1} as functions of T,
$x=\sum_{n=-2}^{2} x_{n} e^{i n v \psi}, \quad y=\sum_{n=-2}^{2} y_{n} e^{i n v t}, \quad \gamma=\sum_{n=-4}^{4} \tau_{n} e^{i n v t}, \quad \gamma_{1}=\sum_{n=-1}^{4} \gamma_{n}{ }^{i n v t}$
Here $x_{n}, y_{n}, Y_{n}, Y_{n}^{\prime}$ are known functions of a, o_{1}, U_{m}, ν. Denoting by μ and c the expressions

$$
\begin{equation*}
\mu=(a-1)\left(a_{1}-1\right)-b^{2}, c=b^{2}-a\left(a_{1}-1\right) \tag{2,3}
\end{equation*}
$$

we can write out the corresponding formulas

$$
\begin{gather*}
x_{n}=\frac{1-a_{1}}{n^{2} v^{2}-\mu} U_{n}, \quad y_{n}=\frac{b+i v n}{n^{2} v^{2}-\mu} U_{n} \quad(n=0, \pm 1, \pm 2) \tag{2.4}\\
\gamma_{n}=\frac{1}{n^{2} v^{2}-1} \sum_{s=n-2}^{2} \frac{i v b(n-s)+\left(c+a_{1} v^{2} n s\right)}{s^{2} v^{2}-\mu} U_{s} U_{n-s}, \gamma_{-n}=\bar{\gamma}_{n} \tag{2.5}\\
\gamma_{n}^{\prime}=\frac{1}{n^{2} v^{2}-\mu} \sum_{s=n-2}^{2} \frac{b\left(v^{2} n s-1\right)-i v\left(c n+a_{1} s\right)}{s^{2} v^{2}-\mu} U_{s} U_{n-s}, \gamma_{-n}^{\prime}=\bar{\gamma}_{n}^{\prime} \quad(n=0,1,2,3,4)
\end{gather*}
$$

In particular,

$$
\begin{align*}
& \gamma_{4}=\frac{2 i v b-\left(c+8 a_{1} v^{2}\right)}{\left(16 v^{2}-1\right)\left(4 v^{2}-\mu\right)} U_{2}^{2}, \quad \gamma_{4}^{\prime}=\frac{b\left(8 v^{2}-1\right)-2 i v\left(a_{1}+2 c\right)}{\left(16 v^{2}-1\right)\left(4 v^{2}-\mu\right)} U_{2}^{2} \\
& \gamma_{3}=\frac{1}{9 v^{2}-1}\left[\frac{1 v b-\left(c+6 a_{1} v^{2}\right)}{4 v^{2}-\mu}+\frac{2 i v b-\left(c+3 a_{1} v^{2}\right)}{v^{2}-\mu}\right] U_{1} U_{3} \tag{2.6}\\
& \tau_{3}=\frac{1}{9 v^{2}-1}\left[\frac{b\left(6 v^{2}-1\right)-i v\left(2 a_{1}+c\right)}{4 v^{2}-\mu}+\frac{b\left(3 v^{2}-1\right)-i v\left(a_{1}+3 c\right)}{v^{2}-\mu}\right] U_{1} U_{2}
\end{align*}
$$

Substituting (2.1) and (2.2) into (1.6), we require that the resulting equation of the form

$$
\sum_{n=-6}^{6} R_{n} e^{i n v z}=k
$$

where the R_{n} depend on $x_{m x} y_{m}, y_{m,}, y_{m}, U_{m}, h, \nu$, be an identity in T_{*} Since $R_{m n}=R_{n}$, it is enough to set $k=R_{0}, R_{\mathrm{n}}=0(n=1, \ldots, 6)$. The condition $R_{\sigma}=0$ is of the form 2iv $y_{4} y_{2}-2 i \nu y_{4}^{\prime} x_{2}+y_{4} U_{2}=0$. Expanding it in accordance with Formulas (2.4) and (2.6), we find that

$$
\begin{equation*}
b=0, v^{2}=a(a-1)\left(a_{1}-1\right) / 4\left(2 a-a_{1}\right) \tag{2.7}
\end{equation*}
$$

But for $b=0$ the equation $R_{5}=0$, i.e.

$$
4 i \gamma_{4} y_{1}+3 i v \gamma_{s} y_{2}-4 i v \gamma_{1} x_{1}-3 i v \gamma_{3} x_{2}+2 \gamma_{4} U_{1}+2 \gamma_{3} U_{2}=0
$$

is (by virtue of (2.4) and (2,6)) equivalent to

$$
\begin{gathered}
4 v^{6}\left(346 a a_{1}-180 a_{1}^{2}-346 a+173 a_{1}\right)+v^{4}\left(a_{1}-1\right)\left(-710 a^{2} a_{1}+216 a a_{1}^{2}+710 a^{2}+\right. \\
\left.+501 a a_{1}-216 a_{1}^{3}-821 a+268 a_{1}\right)+v^{2}\left(a_{1}-1\right)^{2}(a-1)\left(82 a^{2} a_{1}-82 a^{2}-82 a a_{5}+\right. \\
\left.+136 a-17 a_{1}\right)-6 a\left(a_{1}-1\right)^{3}(a-1)^{2}=0
\end{gathered}
$$

On substituting ν^{2} from (2.7) into this expression we obtain

$$
\begin{aligned}
a_{1}^{3}\left(16 a^{2}-16 a+4\right) & +a_{1}{ }^{2} a\left(-50 a^{2}+33 a-4\right)+ \\
& +a_{1} a^{2}\left(34 a^{2}+17 a-16\right)+a^{3}(-34 a+16)=0
\end{aligned}
$$

The latter equation has the three roots $a_{1}{ }^{(1)}, a_{1}{ }^{(2)}, a_{1}{ }^{(3)}$. The values $a_{1}{ }^{(1)}=a$ and $a_{1}^{(\lambda)}=2 a /(2 a-1)$ yiald a singularity in the denominators of Expressions (2.4) and (2.5) $4 \nu^{2}-\mu=0$ for $a_{1}=a_{1}(1)$ and $16 \nu^{2}-1=0$ for $a_{1}=a_{1}^{(2) ; ~ s o l u t i o n s ~ o f ~ t h e ~ a b o v e ~ c l a s e ~ d o ~}$ not exist in this case.

Fot $a_{1}=a_{1}^{(3)}$ we obtain

$$
\begin{equation*}
a_{1}^{(3)}=\frac{a(17 a-8)}{4(2 a-1)}, \quad v^{2}=\frac{(1-a)\left(17 a^{2}-16 a+4\right)}{4 a} \tag{2.8}
\end{equation*}
$$

Since $\nu^{2}>0$ and since, moreover, the triangle inequalities for the moments of inertia, i.e.

$$
\frac{1}{a_{1}}+\frac{1}{a} \geqslant 1, \quad \frac{1}{a}+1 \geqslant \frac{1}{a_{1}}, \quad \frac{1}{a_{1}}+1 \geqslant \frac{1}{a}
$$

must be fulfilled, we find that a assumes values from the ranges

$$
\begin{equation*}
\frac{17-\sqrt{17}}{34} \leqslant a \leqslant \frac{\sqrt{273}-1}{34}, \quad \frac{17+\sqrt{17}}{34} \leqslant a<1 \tag{2.9}
\end{equation*}
$$

3. Before investigating the remaining equations $R_{n}=0(n=1, \ldots, 4)$, it will be convenient to isolate the quantities U_{m} in the expressions for $x_{n}, y_{n}, y_{n}, \gamma_{n}:$ We introduce X_{m}, $Y_{m}, \Gamma_{l, m}, \Gamma_{l, m}$ in such a way that
$x_{n}=X_{n} U_{n}, \quad y_{n}=i v Y_{n} U_{n}, \quad \gamma_{n}=\sum_{s} \Gamma_{s, n-s} U_{s} U_{n-s}, \quad \tau_{n}^{\prime}=i v \sum_{s} \Gamma_{8, n-s} U_{s} U_{n-s}$
Comparing these equations with (2.4) and (2.5), we find that

$$
\begin{align*}
& X_{2}=X_{-2}=\frac{1-a_{1}}{4 v^{2}-\mu}, \quad X_{1}=X_{-1}=\frac{1-a_{1}}{v^{2}-\mu}, \quad X_{0}=\frac{a_{i}-1}{\mu} \tag{3.2}\\
& Y_{2}=-Y_{-2}=\frac{2}{4 v^{2}-\mu}, \quad Y_{1}=-Y_{-1}=\frac{1}{v^{2}-\mu}, \quad Y_{0}=0 \\
& \Gamma_{2,2}=\Gamma_{-2,-2}=-\frac{c+8 a_{1} v^{2}}{\left(16 v^{2}-1\right)\left(4 v^{2}-\mu\right)} \\
& \Gamma_{1,2}=\Gamma_{-2,-1}=-\frac{1}{9 v^{2}-1}\left(\frac{c+6 a_{1} v^{2}}{4 v^{2}-\mu}+\frac{c+3 a_{1} v^{2}}{v^{2}-\mu}\right) \\
& \Gamma_{0,9}=\Gamma_{-3,0}=\frac{1}{4 v^{2}-1}\left(\frac{c}{\mu}-\frac{c+4 a_{1} v^{2}}{4 v^{2}-\mu}\right), \quad \Gamma_{1,1}=\Gamma_{-1,-1}=-\frac{c+2 a_{1} v^{2}}{\left(4 v^{2}-1\right)\left(v^{2}-\mu\right)} \\
& \Gamma_{-1,2}=\Gamma_{-2,1}=-\frac{1}{v^{2}-1}\left(\frac{c+2 a_{1} v^{2}}{4 v^{2}-\mu}+\frac{c-a_{1} v^{2}}{v^{2}-\mu}\right) \\
& \Gamma_{0,1}=\Gamma_{-1,0}=\frac{1}{v^{2}-1}\left(\frac{c}{\mu}-\frac{c+a_{1} v^{2}}{v^{2}-\mu}\right) \\
& \Gamma_{-2,9}=\frac{2 c}{4 v^{2}-\mu}, \quad \Gamma_{-1,1}=\frac{2 c}{v^{2}-\mu}, \quad \Gamma_{2,2}^{\prime}=-\Gamma_{-2,-2}=-\frac{2\left(a_{1}+2 c\right)}{\left(16 v^{2}-1\right)\left(4 v^{2}-\mu\right)} \\
& \Gamma_{0,0}=-\frac{c}{\mu}, \quad \Gamma_{1,2}=-\Gamma_{-2,-1}^{\prime}=-\frac{1}{9 v^{2}-1}\left(\frac{2 a_{1}+3 c}{4 v^{2}-\mu}+\frac{a_{1}+3 c}{v^{2}-\mu}\right) \\
& \Gamma_{0, a^{\prime}}=-\Gamma_{-2,1}^{\prime}=\frac{2}{v^{2}-1}\left(\frac{c}{\mu}-\frac{a_{1}+c}{4 v^{2}-\mu}\right), \quad \Gamma_{1,1^{\prime}}=-\Gamma_{-1,-1}=-\frac{a_{1}+2 c}{\left(4 v^{2}-1\right)\left(v^{2}-\mu\right)} \\
& \Gamma_{-1,2}^{\prime}=-\Gamma_{-2,1}^{\prime}=\frac{-1}{1 v^{2}-1}\left(\frac{2 a_{1}+c}{4 v^{2}-\mu}+\frac{c-a_{1}}{v^{2}-\mu}\right) \\
& \Gamma_{0,1^{\prime}}=-\Gamma_{-1,0}=\frac{1}{v^{2}-1}\left(\frac{c}{\mu}-\frac{a_{1}+c}{v^{2}-\mu}\right), \quad \Gamma_{-2,2}^{\prime}=\Gamma_{-1,1}=\Gamma_{0,0}=0
\end{align*}
$$

All of the quantities just introduced depend only on a by way of Formulas (2.3) and (2.8). The remaining equations $R_{n}=0(n=1, \ldots, 4)$ can be written as

$$
\begin{gather*}
\alpha_{1} U_{2} U_{0}+\alpha_{3} U_{1}^{2}=0, \beta_{1} U_{3}^{2} U_{-1}+\beta_{2} U_{2} U_{1} U_{0}+\beta_{3} U_{1}^{3}=0 \\
\delta_{1} U_{2}^{2} U_{-2}+\delta_{2} U_{2} U_{1} U_{-1}+\delta_{3} U_{2} U_{0}^{2}+\delta_{1} U_{1}^{2} U_{0}+h U_{2}=0 \tag{3.3}\\
e_{1} U_{2} U_{0} U_{-1}+\varepsilon_{2} U_{2} U_{1} U_{-2}+\varepsilon_{3} U_{2}^{2} U_{-1}+\varepsilon_{4} U_{1} U_{0}^{2}+h U_{1}=0
\end{gather*}
$$

Hare

$$
\alpha_{1}=2 v^{2}\left(-\Gamma_{0,2} Y_{2}+2 \Gamma_{2,2}^{\prime} X_{0}+\Gamma_{0,2}^{\prime} X_{2}\right)+2\left(\Gamma_{2,2}+\Gamma_{0,2}\right)
$$

$\alpha_{2}=v^{2}\left(-3 \Gamma_{1,2} Y_{1}-2 \Gamma_{1,1} Y_{2}+3 \Gamma_{1,2}^{\prime} X_{1}+2 \Gamma_{1,1}^{\prime} X_{2}\right)+2\left(\Gamma_{1,2}+\Gamma_{1,1}\right)$
$\beta_{3}=v^{2}\left(-4 \Gamma_{3,2} Y_{-1}-\Gamma_{-1,2} Y_{2}+4 \Gamma_{2,2}^{\prime} X_{-1}+\Gamma_{-1,2}^{\prime} X_{2}\right)+2\left(\Gamma_{2,2}+\Gamma_{-1,8}\right)$
$\beta_{2}=v^{2}\left(-2 \Gamma_{0,1} Y_{2}-I_{0,1} Y_{2}+3 \Gamma_{1,2}^{\prime} X_{0}+2 \Gamma_{0,2}^{\prime} X_{1}+\Gamma_{0,1}^{\prime} X_{2}\right)+2\left(\Gamma_{1,2}+\Gamma_{0,2}+\Gamma_{0,1}\right)$
$\beta_{j}=2 v^{2}\left(-\Gamma_{1,1} Y_{1}+\Gamma_{1,1}^{\prime} X_{1}\right)+2 \Gamma_{1,1}$
$\delta_{1}=4 \nu^{v}\left(-\Gamma_{2,2} Y_{-2}+\Gamma_{2,2}^{\prime} X_{-2}\right)+2\left(\Gamma_{2,2}+\Gamma_{-2,2}\right)$
$\delta_{2}=v^{2}\left(-3 \Gamma_{1,2} Y_{-1}-\Gamma_{-1,2} Y_{1}^{\prime}+3 \Gamma_{1,2}^{\prime} X_{-1}+\Gamma_{-1,2}^{\prime} X_{1}\right)+2\left(\Gamma_{1,2}+\Gamma_{-1,2}+\Gamma_{-1,1}\right)$
$\delta_{3}=2 \nu^{2} \Gamma_{0.2}^{\prime} X_{0}+2\left(\Gamma_{0.2}+\Gamma_{0,0}\right), \quad \delta_{4}=v^{2}\left(-\Gamma_{0,1} Y_{1}+2 \Gamma_{1,1}^{\prime} X_{0}+\Gamma_{0,1}^{\prime} X_{1}\right)+$ $+2\left(\Gamma_{1,1}+\Gamma_{0,1}\right)$
$\varepsilon_{-}=\nu^{2}\left(-2 \Gamma_{0,2} Y_{-1}+\Gamma_{-1,0} Y_{2}+2 \Gamma_{0,2}^{\prime} X_{-1}+\Gamma_{-1,2}^{\prime} X_{0}-\Gamma_{-1,0}^{\prime} X_{2}\right)+2\left(\Gamma_{0,2}+\Gamma_{-1,2}+\Gamma_{-1,0}\right)$
$\varepsilon_{:}=v^{2}\left(-3 \Gamma_{1,2} Y_{-2}+\Gamma_{-2,1} Y_{2}+3 \Gamma_{1,2}^{\prime} X_{-2}-\Gamma_{-2,1}^{\prime \prime} X_{2}\right)+2\left(\Gamma_{1,2}+\Gamma_{-2,2}+\Gamma_{-2,1}\right)$
$e_{j}=2 v^{2}\left(-\Gamma_{1,1} Y_{-1}+\Gamma_{1,1}^{\prime} X_{-1}\right)+2\left(\Gamma_{1,1}+\Gamma_{-1,1}\right), \varepsilon_{4}=v^{2} \Gamma_{0,1} X_{0}+2\left(\Gamma_{0,1}^{\prime}+\Gamma_{0,0}\right)$
4. The first three equations of (3.3) define the squares of the absolute values of U_{n},

$$
\begin{gather*}
U_{-2} U_{2}=\left|U_{-2}\right|^{2}=\left|U_{2}\right|^{2}=\frac{\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)^{2}}{\alpha_{2}^{2} \beta_{1}^{2}} U_{0}^{2} \\
U_{-1} U_{1}=\left|U_{-1}\right|^{2}=\left|U_{2}\right|^{2}=\frac{\alpha_{1}\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)}{\alpha_{2}^{2} \beta_{1}} U_{0}^{2} \tag{4.1}\\
U_{0}^{2}=\frac{\alpha_{2}^{2} \beta_{3}^{2} h}{\alpha_{2} \beta_{1}^{2}{ }^{2}\left(\alpha_{1} \delta_{6}-\alpha_{2} \delta_{3}\right)-\alpha_{1} \beta_{1} \delta_{2}\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)-\delta_{1}\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)^{2}}
\end{gather*}
$$

$$
U_{n} \text { are generally complex, }
$$

$$
U_{n}=\left|U_{n}\right| \exp i \varphi_{n}, \quad U_{-n}=\bar{U}_{n} \quad(n=1,2)
$$

and, as is evident from the first equation of (3.3), their arguments ϕ_{n} are related by Expressions

$$
\varphi_{2}=\pi+\arg \alpha_{2}-\arg \alpha_{1}+2 \varphi_{1}, \quad \varphi_{-2}=\pi-\arg \alpha_{3}+\arg \alpha_{1}-2 \varphi_{1}
$$

Making use of the fact that system (1.2) is self-contained, we incorporate the constant ϕ_{1} into $\nu \tau$, which enables us to regard the U_{n} as real functions of a. Hence,

$$
U=\sum_{n=-2}^{2} \cdot\left|U_{n}\right| \exp i\left(n v \tau+\varphi_{n}\right)=U_{0}+2 U_{1} \cos v \tau+2 U_{2} \cos 2 v \tau
$$

and we can assume that $U_{0}>0, U_{1}>0$.
Thus, the solution of Eqs. (1.2), (1.6) is of the form (cf. (2.2), (3.1))

$$
\begin{gathered}
U=\sqrt{h} \sum_{n=0}^{2}\left(U_{n}\right) \cos n v \tau, \quad x=\sqrt{h} \sum_{n=0}^{2}\left(x_{n}\right) \cos n v \tau, \quad y=\sqrt{h} \sum_{n=1}^{2}\left(y_{n}\right) \sin n v \tau \\
Y=h \sum_{n=0}^{4}\left(\gamma_{n}\right) \cos n v \tau, \quad \gamma_{1}=h \sum_{n=1}^{4}\left(\gamma_{n}{ }^{\prime}\right) \sin n v \tau \\
\left(U_{n}\right)=\frac{2 U_{n}}{\sqrt{n}}, \quad\left(r_{n}\right)=\frac{2 x_{n}}{\sqrt{n}}, \quad\left(y_{n}\right)=\frac{2 y_{n}}{i \sqrt{h}} \quad(n=-1,-2) \\
\left(\gamma_{n}\right)=\frac{2 \gamma_{n}}{n}, \quad\left(\gamma_{n}{ }^{\prime}\right)=\frac{2 \gamma_{n}^{\prime}}{i h} \quad(n=-1,-2,-3,-4) \\
\left(U_{0}\right)=\frac{L_{0}}{\sqrt{h}}, \quad\left(x_{0}\right)=\frac{x_{0}}{\sqrt{h}}, \quad\left(\gamma_{0}\right)=\frac{\gamma_{n}}{n}
\end{gathered}
$$

The variables x^{2} and $y_{2}{ }^{2}$ can be determined from relations (1.4),

$$
z^{2}=h \sum_{n=0}^{4}\left(z_{n}\right) \cos n \nu \tau, \quad \gamma_{g^{2}}=h^{2} \sum_{n=0}^{8}\left(\gamma_{n}{ }^{\prime \prime}\right) \cos n \nu \tau
$$

From the condition of realness of a we infer that $\nu \tau$ varies in the range

$$
\Psi_{1}+2 m \pi \leqslant v \tau \leqslant \Psi_{2}+2 m \pi \quad(m=0, \pm 1, \pm 2, \ldots)
$$

Integral (1.5) yields $x^{2} h^{2}=\Gamma^{2}$ i.e. the relationship between h and Γ.
The dependence on t can be determined from the relation $d \tau=a_{2} z d t$,

$$
t^{\prime}=a_{2} t=\frac{1}{\sqrt{h}} \int_{\tau,}^{\tau}\left[\sum_{n=0}^{4}\left(z_{n}\right) \cos n v \sigma\right]^{-1 / \hbar} d \sigma
$$

To complete construction of the solution, let us write out the condition which a must satisfy. Substituting (4.1) into the last equation of (3.3), we obtain

$$
\begin{aligned}
\left(\varepsilon_{2}-\delta_{1}\right)\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)^{2}+\beta_{1}\left(\alpha_{1} \varepsilon_{3}\right. & \left.-\alpha_{2} \varepsilon_{1}+\alpha_{1} \delta_{2}\right)\left(\alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}\right)+ \\
& +\alpha_{2} \beta_{1}^{2}\left(\alpha_{2} \varepsilon_{4}+\alpha_{1} \delta_{4}-\alpha_{2} \delta_{3}\right)=0
\end{aligned}
$$

which has the three roots $a^{(1)}, a^{(2)} a^{(3)}$ in ranges (2.9). The value $a^{(3)}=0.4$ must he rejected, since it yields $\Gamma=0$. We have thus obtained two particular solutions of equations (1.2), (1.3). These solutions are exact, since the expressions for $\left(x_{n}\right),\left(y_{n}\right),\left(y_{n}\right),\left(\gamma_{n}{ }^{\prime}\right)$, $\left(z_{n}\right),\left(\gamma_{n}{ }^{\prime \prime}\right)$ which depend on $\alpha^{(1)}$ and $a^{(2)}$ are known (cf. (2.3), (2.8), (3.2), (3.4), (4.1), (3.1)).
5. Let us write out these solutions, taking as our $a^{(1)}$ and $a^{(2)}$ their approximate values obtained numerically.

Thefirstsolution: $\boldsymbol{o l}^{(1)}=0.41190, \nu=0.32385$
$U=\sqrt{h}(2.3910+1.5836 \cos v \tau-0.7942 \cos 2 v \tau)$

$$
\begin{gathered}
x=-\sqrt{h}(4.0656+4.7056 \cos v \tau+1.8994 \cos 2 v \tau) \\
y=\sqrt{h}(3.6551 \sin v \tau+2.9508 \sin 2 v \tau)
\end{gathered}
$$

$z^{2}=-h(2.8001+4.6960 \cos v \tau+2.7124 \cos 2 v \tau+$

$$
+0.9920 \cos 3 v \tau+0.1731 \cos 4 v \tau) 10
$$

$Y=-h(0.5228+1.0615 \cos \nu \tau+1.0048 \cos 2 \nu \tau+0.6263 \cos 3 v \tau+0.1763 \cos 4 \nu \tau) 10$ $\gamma_{1}=h(1.0742 \sin \nu \tau+1.2310 \sin 2 v \tau+0.6601 \sin 3 \nu \tau+0.1601 \sin 4 \nu \tau) 10$ $\gamma_{2}^{2}=h^{3}(-3.1183-5.1569 \cos v \tau-2.7854 \cos 2 v \tau-0.7584 \cos 3 \nu \tau+0.1127 \cos 4 \nu \tau \div$ $+0.1680 \cos 5 v \tau+0.0416 \cos 6 v \tau-0.0048 \cos 7 v \tau-0.0027 \cos 8 v \tau) 10^{2}$ $.026092 h^{2}=\Gamma^{2}, 2.7431+2 m \pi \leqslant v \tau \leqslant 3.5401+2 m \pi(m=0, \pm 1, \pm 2, \ldots)$
 $U=\sqrt{h}(2.5242+0.9663 \cos v \tau+0.4598 \cos 2 v \tau) 10^{-1}$ $x=-\sqrt{h}(8.6501+2.0852 \cos \nu \tau+0.4701 \cos 2 \nu \tau) 10^{-1}$ $y=-\sqrt{\bar{h}}(1.0197 \sin v \tau+0.4597 \sin 2 v \tau) 10^{-1}$
$\mathbf{z}^{\mathbf{2}}=h(1.1811-4.6670 \cos \nu \tau-1.5776 \cos 2 v \tau-0.5912 \cos 3 \nu \tau-0.0264 \cos 4 \nu \tau) 10^{-1}$ $\gamma=-h(1.6253+0.9811 \cos v \tau+0.4685 \cos 2 v \tau+0.3012 \cos 3 v \tau+0.0184 \cos 4 \nu \tau) 10^{-1}$
$\gamma_{\mathrm{k}}=h(-0.9572 \sin v \tau+0.4482 \sin 2 v \tau+2.3858 \sin 3 v \tau+0.0764 \sin 4 v \tau) 10^{-2}$ $\boldsymbol{\gamma}_{2}{ }^{2}=h^{2}(0.6549+3.8038 \cos \nu \tau+2.2812 \cos 2 v \tau+1.4602 \cos 3 \nu \tau+0.4868 \cos 4 \nu \tau-$ $+0.1492 \cos 5 \nu \tau+0.0252 \cos 6 v \tau+0.0037 \cos 7 v \tau \div 0.0001 \cos 8 v \tau) 10^{-2}$ ग.026574 $h^{2}=\Gamma^{2}, 1.0099+2 m \pi \leqslant v \tau \leqslant 5.2733+2 m \pi(m-0, \pm 1, \pm 2, \ldots)$

The authors are grateful to P.V. Kharlamov for formulating the problem and for his interest in the present paper.

BIBLIOG RAPHY

1. Kharlamova, E.I., Reducing of the problem of motion of a rigid body with one fixed point to a single equation. New particular solution of the above problem. PMM Vol. 30, No. 4, 1966.
2. Kharlamov, P.V., On the equations of motion of a heavy body with a fixed point. PMM Vol. 27, No. 4, 1963.
3. Kharlamova, E.I., On particular solution of the Euler-Poisson equations. PMM Vol. 23, No. 4, 1959
